Work (physics)

Work transfers energy from one place to another, or one form to another.
According to Jammer, the term work was introduced in 1826 by the French mathematician Gaspard-Gustave Coriolis as "weight lifted through a height", which is based on the use of early steam engines to lift buckets of water out of flooded ore mines. According to Rene Dugas, French engineer and historian, it is to Solomon of Caux "that we owe the term work in the sense that it is used in mechanics now".
Constraint forces limit the movement of components in a system, such as constraining an object to a surface (in the case of a slope plus gravity, the object is stuck to the slope, when attached to a taut string it cannot move in an outwards direction to make the string any 'tauter'). Constraint forces restrict the velocity in the direction of the constraint to zero, which means the constraint forces do not perform work on the system.
For a mechanical system, constraint forces eliminate movement in directions that characterize the constraint. Thus constraint forces do not perform work on the system, because the component of velocity along the constraint force at each point of application is zero. For example, in a pulley system like the Atwood machine, the internal forces on the rope and at the supporting pulley do no work on the system. Therefore work need only be computed for the gravity forces acting on the bodies.